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ABSTRACT 
 

We seek to harness microelectromechanical systems (MEMS) technologies to build biomimetic devices for low-power, 
high-performance, robust sensors and actuators on micro-autonomous robot platforms. Hair is used abundantly in nature 
for a variety of functions including balance and inertial sensing, flow sensing and aerodynamic (air foil) control, tactile 
and touch sensing, insulation and temperature control, particle filtering, and gas/chemical sensing. Biological hairs, 
which are typically characterized by large surface/volume ratios and mechanical amplification of movement, can be 
distributed in large numbers over large areas providing unprecedented sensitivity, redundancy, and stability (robustness). 
Local neural transduction allows for space- and power-efficient signal processing. Moreover by varying the hair structure 
and transduction mechanism, the basic hair form can be used for a wide diversity of functions. In this paper, by 
exploiting a novel wafer-level, bubble-free liquid encapsulation technology, we make arrays of micro-hydraulic cells 
capable of electrostatic actuation and hydraulic amplification, which enables high force/high deflection actuation and 
extremely sensitive detection (sensing) at low power. By attachment of cilia (hair) to the micro-hydraulic cell, air flow 
sensors with excellent sensitivity (< few cm/s) and dynamic range (> 10 m/s) have been built. A second-generation 
design has significantly reduced the sensor response time while maintaining sensitivity of about 2 cm/s and dynamic 
range of more than 15 m/s. These sensors can be used for dynamic flight control of flying robots or for situational 
awareness in surveillance applications. The core biomimetic technologies developed are applicable to a broad range of 
sensors and actuators. 

Keywords: micro electro mechanical systems (MEMS), micro-hydraulics, biomimetic sensors and actuators, air flow 
sensor  

1. INTRODUCTION 
Micro-autonomous systems such as those developed under the Army Research Laboratory’s MAST (Micro Autonomous 
Systems & Technology) program need sensory systems for dynamic robot control, mapping and navigation, and 
situational awareness. These platforms usually have very limited payload capacity making off-the-shelf components 
challenging or impossible to integrate. For some applications such as directional air flow or wind-gust detection there are 
no commercial parts available even if size and weight constraints are relaxed. This motivates us to investigate a new 
class of sensors that can offer high speed, small size, high resolution, low power and wide dynamic range. These sensors 
are inspired by biological hair which is characterized by arrays of high aspect ratio, three-dimensional structures, with 
mechanical amplification of movement and local neural (i.e., electronic) integration. 
 
Previously there have been a few investigations into bio-mimetic hair-like air flow sensors which have established that 
such architectures can offer high accuracy and high resolution flow measurement1,2. Since the tall hair structure is 
oriented out of the substrate plane, a small sensor footprint is possible, enabling sensor arrays which provide redundancy 
and fault tolerance. Hairs with piezoresistive or capacitive transduction for air flow sensing have very fragile structures 
with exposed delicate electronic elements which limit their use1,2. These designs also exhibit a trade-off between high 
accuracy and large dynamic range. For instance, for a conventional capacitive sensor, a narrow capacitive gap is needed 
to make the device sensitive to small plate deflections and thus obtain high sensitivity1,3. However narrow gaps 
deteriorate the available sensor range. Here we exploit a micro-hydraulic structure to expand the measurement range 
while maintaining the same sensitivity4,5. The hydraulically-assisted capacitive sensor structure is shown in Figure 1. A 
large gap can be used on the front side to allow large range while a narrow back-side gap is used to obtain high 
sensitivity. Due to the asymmetric nature of micro-hydraulic system, a larger capacitive plate area on the back side can 
compensate for the smaller deflection on this side. In addition, since both gaps are filled with liquid and enclosed, the  
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Since channel width plays a crucial role in response time, the best way to lower delay in the system is to widen the 
channel as much as possible. Also, in order to thoroughly remove any additional resistance caused by the narrow 
capacitive gap between the front side membrane and the front side trench, we eliminate the trench and silicon underneath 
and introduce a new design geometry which we refer to as “sloped wall.” The sloped walls can be fabricated with 
anisotropic wet etching of silicon with potassium hydroxide (KOH), tetramethylammonium hydroxide (TMAH) or EDP 
(ethylene diamine – pyrocatechol). In order to support the internal electrode on the backside, a perforated membrane is 
added. Figure 4 shows the sloped wall micro-hydraulic system with perforated membrane. The simulation results of 
sloped wall geometry show a tremendous improvement in the device performance. Comparing the straight wall to the 
sloped wall without the perforated membrane, the rise time for silicone oil is reduced by almost four orders of magnitude 
as shown in Figure 3. After a perforated membrane is added, there is an increase of ~5x in response time. 
 
As discussed above, there is a compromise between fluidic resistance and capacitance. It becomes more complicated 
when one of the electrode plates of the capacitor is curved, as is the case for the outer membrane for which the shape is 
determined by liquid surface tension. However, this curved structure can be advantageous in that most of the capacitance 
is formed around the edge where the gap is minimal. Therefore, to improve the time response we can create a large 
opening in the middle of the perforated electrode, as shown in Figure 4. This dramatically lowers the fluidic resistance of 
the membrane but only slightly lowers the capacitance. 
 

 
Figure 4. Sloped wall architecture with perforated membrane. A large opening is added in the middle of perforated membrane 
to further reduce the fluidic resistance. 

 
To optimize the opening size, further simulations are performed. Figure 5 plots the response time of membranes with 
various perforation geometries calculated in sensing mode, i.e. with pressure applied to the top (smaller) side membrane 
and deflection measured on the (larger) backside. Wider perforation gaps and larger hole openings in the center of the 
membrane lead to less fluidic resistance and thus a faster response time. With perforation type 2 and a 55% opening in 
the center, resulting in a net 20% fill factor across the membrane, the settling time for the membrane can be reduced to 
50 msec which is 400× smaller than for the straight wall geometry. It should be noted that this tremendous improvement 
is achieved with only a 40% reduction in total capacitance. 
 

 
Figure 5. Comparison of response times for perforated membranes with two different perforation patterns and various center 
hole openings. Perforations 1 and 2 consist of 29-µm and 39-µm gaps between adjacent 20-µm and 10-µm wide silicon traces, 
respectively. The hole percentage is the ratio between the open hole diameter and the membrane diameter. The symbols are 
used solely to visually identify the lines. 
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4. CONCLUSION 
In this paper we have described hair-like air flow sensors made using a novel micro-hydraulic structure. We have 
analyzed the dynamics of this structure through simulation and used the results to develop a new architecture which 
reduces the response time of the sensor by several orders of magnitude while maintaining a wide dynamic range and high 
resolution. The improved hair sensors are successfully fabricated and tested. They offer a large air flow speed 
measurement range, high sensitivity and high bandwidth of about 30 Hz. This small, low power and high performance 
biomimetic air flow sensor can be integrated with autonomous platforms for situational awareness in surveillance 
applications or dynamic flight control by direct air flow measurement. The micro-hydraulically-amplified electrostatic 
sensing/actuating system shown here can also be used as a new design element in a variety of micro electromechanical 
devices to improve their performance. 
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